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Abstract—Movement primitives are a well-established ap-
proach to robot motion planning, as they offer a modular
basis for robot motion planning. Dynamic movement primitives
(DMPs) are a popular control framework based on nonlinear
differential equations which, when scaled in time, produce a
smooth kinematic movement plan. In this paper, we introduce
an adjusted movement primitive framework which replaces the
stable equilibria of DMPs with saddle points. These saddle
points are linked together in stable heteroclinic channels (SHCs)
which are in turn part of dynamical systems called stable
heteroclinic networks. SHC-based movement primitives (SMPs)
form a framework where the weights of the kernel functions
have spatial significance in the task space. In this paper, we
show that SMPs and DMPs perform comparably according to
a kinematic-based cost function. We also show that SMP kernel
weights follow a given trajectory when plotted in the task space.
The plotted kernel weights provide an intuitive tool for managing
the controller.

Index Terms—Biologically-Inspired Robots, Motion Control

I. INTRODUCTION

DYNAMIC movement primitives (DMPs) are a common
robotic control framework [1], [2] which uses modular

sub-components—a series of attractor points [3]–[5]—to pro-
duce arbitrarily complex motions. The relative strength, timing
and growth/decay rates of the attractors are varied to create
these custom trajectories [5]. A limitation of DMPs is that the
best attractor locations (in both state space and the task space)
are increasingly far from the corresponding trajectory which
makes it difficult for users to initialize or evaluate a robotic
controller using this representation.

DMPs were originally developed based on the biological
insight that complex animal behaviors come from the dynam-
ics of neural subsystems. In animals, motor control can be
decomposed into motor modules (or muscle synergies) which
reflect how neuron and muscle groups combine to accomplish
different tasks [6]. DMPs have already been used to mimic
humanoid movements [3], animal-inspired movements [7], and
have been expanded to initiate repeated motion patterns [1],
[4]. Keeping a biologically plausible representation allows
insight to be transferred between biology and robotics.
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Fig. 1. A saddle equilibrium point (a) can be described with stable and
unstable eigenvectors, shown acting along the y- and x-axis respectively,
and trajectories (in blue) can be established that approach and depart the
neighborhood of the point. If multiple saddle points are combined in this way
(b), a stable heteroclinic channel is formed [15].

In recent years, new biological representations have been
developed to capture neural dynamics, including attractor-
based representations (like DMPs) as well as transient dynamic
systems like neural networks [8]–[11] and stable heteroclinic
networks [12]. Stable heteroclinic networks are composed
of stable heteroclinic channels (SHCs): a series of saddle
equilibria where the unstable manifold of one leads onto the
stable manifold of another, thus creating pathways between
the saddle points (Fig. 1) [13]–[15]. SHCs have already
been investigated as a model for neural activation patterns
in animals [16]–[18], and have also been used to investigate
dynamical state systems [19], [20] as well as apply those
systems to robotic movement [14].

In this paper, we will replace the underlying kernels of
DMPs, stable attractor points or limit cycles, with the un-
derlying kernels of SHCs, saddle points, and show that they
are comparable in both ease of application and similarity
of results. This is done by implementing SHC and DMP
frameworks for the same tasks (trajectory following) and
evaluating the resulting trajectories quantitatively and visually
(see Section II).

First, we will demonstrate that this new kernel preserves the
learnability of DMPs. Learnability is an essential characteristic
of DMPs that lends to their robustness as a framework.
DMPs are easily learnable because DMP parameters can be
varied without disrupting the overall system stability, therefore
various learning algorithms can be applied [21], [22]. In
Section II, a batch learning method will be implemented on
both frameworks to find the best-fit trajectory according to a
user-defined cost function.

Furthermore, we will show that the new representation using
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SHC kernels has a specific spatial advantage over DMPs.
When learning algorithms are applied to DMPs, they usually
result in blackbox optimized systems where users cannot easily
evaluate the robotic controller. The SHC representation can be
visualized in the task space in a way that follows the trajectory
it is producing; this characteristic will be explored in Section
III.

II. METHODS

The goal of this work is to build a movement primitive
framework using stable heteroclinic networks [12]. The saddle
points in SHCs can be interpreted as states with pathways
joining them. These building blocks are analogous to the
attractor points or limit cycles of DMPs. The MATLAB code
for this formulation can be found at https://github.
com/NatRouse/DMPandSMP.git.

A. System Models

For both a dynamic movement primitive (DMP) and an
SHC-based movement primitive (SMP), the governing equa-
tion of the canonical system is defined as:

τ ÿ = αy(βy(g − y)− ẏ) + f (1)

Where τ is a time-scaling term, y is the relevant system
variable (for example, end-effector position or joint angle), αy
and βy are constants representing the damping and stiffness of
the system respectively, g is the “goal” position of the system,
and f is the external force being applied to the system by the
controller [1]. The difference between the DMP and SMP is
f ’s formulation.

1) DMP System Model: The forcing term for a DMP is
defined as follows:

f(x) =

∑K
i=1 ψiwix∑K
i=1 ψi

(2)

Where K is the total number of underlying kernel functions
used, ψi is the shape each kernel function, wi is the weight
of each kernel, and x is the canonical state of the system. x is
given as the solution to the following differential equation:

τ ẋ = αxx (3)

Where τ is a time-scaling factor, and αx is a damping term.
The kernel function, ψi, is a Gaussian curve defined as:

ψi = exp

(
−1
2σ2

i

(x− ci)2
)

(4)

Where σi determines the width of the ith kernel function,
and ci is the “center” of the kernel function. Together, σ and
c define the sequential activation of each kernel function as
the canonical system decays to zero [1]. By using a learning
algorithm, the weights, wi are manipulated to produce a
forcing term which will cause the system to follow the desired
trajectory.

Fig. 2. (a) A single unweighted kernel for a DMP (top) plotted from a Guas-
sian formulation. A single unweighted kernel for an SMP (bottom) plotted
from a series of Lotka-Volterra equations. (b) Ten unweighted kernels for both
DMPs and SMPs. Lotka-Volterra kernels have a more symmetrical parabolic
shape, and Gaussian kernels are less symmetrical with an exponential decay.

2) SMP System Model: In contrast, the governing equations
for an SMP are:

f(xi) =
K∑
i=1

xiwi (5)

τdxi = xi

αi − K∑
j=1

ρijxj

 dt+
N∑
j=1

Cijzj (6)

Where:

• xi is the underlying state vector,
• K is the number of kernel functions being used,
• wi is the weight of each corresponding kernel function,
• N is the number of sensors,
• αi and ρij are parameters that define the overall behavior

of the system,
• Cij is a coupling matrix, and
• zj is noise.

as described by Horchler et al [15]. They are discussed in
more depth in Section II-B below.

The canonical state expression in (6) is based on N -
dimensional competitive Lotka-Volterra (LV) equations [23].
Fig. 2 shows the visual difference between the waveforms
constructed from a Gaussian and LV kernel function. Unlike
Gaussian kernels, noise is a critical factor in the use of LV
kernels. The noise zj ensures that the system variable x stays
near the SHC saddle point, but not so close that the system
remains in static equilibrium [15].

B. Setting System Parameters

The variables in a DMP system that control system behavior
are the width, location and weight (magnitude) of the kernel
functions (σ, c and w respectively).

The variables that control SMP behavior are the parameters
that make up the connection matrix ρij , and the noise zj . The
connection matrix is a real, non-symmetric matrix constructed
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Fig. 3. For both SMPs (bottom) and DMPs (top), the resulting trajectories
(in color) align well with the desired trajectories (in black) for 10 kernels.

with three variables: the growth rate α, the magnitude β, and
the saddle value ν. The matrix is constructed as follows:

ρij =


αi/βi, if i=j

αi − αj/νj
βj

, if i=j-1

αi + αj
βj

, otherwise i,j=1,2,...,K

(7)

Where α, β and ν are vectors of length K. Mathematically, αi
controls how fast the ith kernel grows in that dimension, βi is
the maximum amplitude of the waveform, and νi defines that
kernel’s insensitivity to input noise. These variables (and the
noise) must be varied synchronously to create and maintain
functional kernels [15].

The other notable variable in both DMP and SMP systems is
the number of underlying kernel functions, K, used to perform
a task. The complexity of a task determines the required
number of kernel functions; in this paper, K = 10 so that
each kernel and associated trajectory regions can be can be
visualized separately.

C. Learning Kernel Weights for Desired Trajectory Shapes

In order to illustrate the usefulness of SMP kernels, three
trajectory-following tasks are used. The first two are straight
paths connected to convex and concave curves, creating a
critical corner in the trajectory, the third trajectory is a circular
path (Fig. 3). To produce these trajectories, a batch learning
method is applied and the resulting trajectories are evaluated
via cost function.

1) Cost Function: The cost function used to evaluate the
batch learning method is:

cost = 100 ∗
DOF∑ √

t∑
(ylearned − ydesired)2

+ 1000 ∗
DOF∑ √

(ylearned (final) − g)2

+

t∑
ẏ +

t∑
ÿ

(8)

Where t is the total number of timesteps. Cost values are
evaluated for the unforced system (wi = 0 for all i = 1 : K),
random weights (wi = N (5, 10), an array of normally dis-
tributed random variables with a mean of 5, and a variance of

Fig. 4. The alignment of the trajectories is quantified with a cost function (8).
The resulting costs are compared according to different cases: Zero Weights—
all kernel weights are zero, Random Weights—weights are assigned from
a normal distribution with mean=5 and variance=10, Learned Weights—the
batch learned weights, and Sampled Weights—weights sampled and scaled
from the trajectory. SMP & DMP Learned Weights costs are comparable
with each other, and the SMP Sampled Weights cost is comparable with both
Learned Weights costs.

10), the final learned weights, and weights sampled and scaled
from the trajectory (which is discussed in Section III-D).

2) Learning Algorithm: There are many approaches to
learning DMP weights online, such as locally weighted re-
gression [1], or PI2 [24]. Here we implement a simple two
pass, batch learning method which was faster than and had
comparable costs to the two previously mentioned methods.
First the canonical state x was initialized according to guide-
lines in [1], [15] & [25]. A desired speed, acceleration and
forcing function were calculated at coarse timesteps based on
the desired trajectory. These variables were used in vectorized
Matlab operations to produce an initial approximation of the
weights. This approximation enabled subsequent refinement
with finer timesteps.

The batch learned weights are assessed via the cost function
in Section II-C1 above. These results are discussed in Section
III-B.

III. RESULTS

A. Costs

Learning algorithms can be transferred from DMPs to
SMPs. The cost for both processes was evaluated using the
batch learning process and cost function described in Sec-
tion II-C. Fig. 4 shows the costs calculated when all kernel
weights are at zero (Zero Weights), randomly assigned weights
(Random Weights), and the batch learned weights (Learned
Weights). Fig. 4 shows that the cost associated with the batch
learned SMP kernel weights is slightly smaller than that of the
DMP kernels.

B. Trajectory Following

After learning, the resulting trajectories for both DMPs and
SMPs follow the desired trajectory, as shown in Fig. 3. This
is because the total forcing function from each representation
is similar, despite the difference in formulation ((2) & (5))
(see Fig. 5). The difference comes from the kernel summation.
The SMP forcing function can be reconstructed by smoothly
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Fig. 5. In the first two columns, the individual kernels (from Fig. 2) are scaled by the learned weights for (a) Convex, (b) Concave and (c) Circular trajectories
in state space. In both formulations, the total forcing function (black) is the sum of the weighted kernels (colors). For SMPs, the kernel peaks can be traced
to reproduce the corresponding forcing function. In the second two columns, it can be seen that the resulting forcing functions for SMP and DMP are similar,
in order to achieve the same desired trajectory.

Fig. 6. In Cartesian space, the same forcing function (in black) and trajectory is produced (in color, and see insets for DMPs), but the learned weights (in
gray) are much larger for DMPs than for SMPs. In fact, the SMP weights for the x- and y-components of the forcing function can be plotted on the x-
and y-axis and correspond to the trajectory. The circular trajectory matches the forcing function, and from inspection SMP weights can be scaled from the
trajectory itself. The convex and concave SMP weights can also be scaled from the trajectory with additional translation.
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tracing along the peaks of the weighted SMP kernel func-
tions, while the weighted DMP kernels grow over time along
the path, with peaks greatly exceeding the required forcing
function.

C. Spatial Significance of Kernel Weights

Because SMP kernel weights do not grow exponentially
over time (unlike DMP kernels), they follow their respective
forcing function more closely. This can be seen when the
weights are plotted in state space (Fig. 5) and in the task
space (Fig. 6). The spatial significance of SMP kernel weights
is clear; in every chosen trajectory, they match the forcing
function when it is plotted in the task space. Thus, SMP
weights describe the position of the saddle points in a way that
is visually comparable with the trajectory. In contrast, DMP
kernel positions are not only farther from the trajectory but
the shape of the connected path of DMP attractors is distorted
compared to the forcing function and desired trajectory.

D. Sampling Weights from Trajectory

When the goal is set to (0,0), as in the circular trajectory,
it is possible to approximate kernel weights directly (without
learning or optimization) using the desired trajectory path and
velocity if the system parameters are known.

We selected weights in this way using:

w =


√

(αyv)2 +
(
αyβy

2 − τ
(
v2

r

))2
r

 ∗ ydesired (9)

Where v is a desired velocity and r is the radius of curvature
of the trajectory. Here, we demonstrate this approach using
uniform velocity and averaged curvature.

Fig. 7 shows the sampled weights (red), the forcing function
(black), the best weights (gray), and the trajectory produced
from these weights (color gradient). When kernel weights
for the circular trajectory are chosen using this expression it
produces an initial SMP cost that is approximately 12.5% of
the cost of the random SMP weights calculated in Fig. 4. This
type of scaling is not compatible with DMPs; scaled weights
do not have a reduced cost.

Another, more complex, enclosed trajectory was used to val-
idate (9). The heart-shaped trajectory in Fig. 7 was produced,
the same scale was applied, and the results are similar to that
of the circular trajectory. With best weights selected from the
scaled trajectory, the inital SMP cost value was 1.6% of that
for DMPs.

IV. DISCUSSION AND CONCLUSION

In this paper, we have shown that DMP kernels can be
replaced with another, biologically-relevant kernel based on
SHCs. Both DMPs and SMPs were used to produce various
reference trajectories (Fig. 3), and a batch learning process was
successfully applied to both representations with comparable
resulting costs (Fig. 4).

After learning, the best SMP kernel weights were seen to
follow the desired trajectory when plotted in the task space,

Fig. 7. (a) Circular trajectory produced using 10 kernels. (b) Heart-shaped
trajectory produced using 10 kernels. (c) Heart-shaped trajectory produced
using 20 kernels. The top row shows trajectories produced by approximating
the weights using (9). The bottom row shows trajectories and weights after
batch learning & optimization. The sampling approach reduces cost by an
order of magnitude. The SMP cost of (b) top is 1.6% of the DMP cost using
random weights; a similar difference can be seen for (a) in Fig. 4. This was
run using SMPs and resembles the more complex trajectory-following tasks
completed by Ijspeert et al in [5]. The weight locations after learning are
similar to the sampled weights, but show some adjusted spacing at sharp turns
in the trajectory. More kernels are placed at these sharp points to achieve better
trajectory-following.

unlike DMPs (Fig. 6). We investigated this result in two ways.
First, the underlying kernels and the resulting forcing function
were plotted in state space (Fig. 5). The SMP forcing function
directly followed its kernels, which suggests that SMP kernels
are more closely coupled to the system’s behavior than DMP
kernels. Second, a process was established for sampling and
scaling kernel weights directly from the desired trajectories
(9). This was applied to additional trajectories with satisfactory
results (Fig. 7).

The close coupling of SMP kernels to their resulting tra-
jectories, and the ease with which they can be sampled could
provide a tool for the selection and analysis of SMP kernel
weights. This feature may provide a simplified means for
moving kernels spatially, thus decreasing the computational
cost for learning the best kernel weights for a task (or possibly
eliminating that process entirely).

One potential drawback of changing the kernel is in the
computational complexity. The DMP framework is O(kt)
where k is the number of kernels and t is the number
of timesteps calculated. The SMP framework is O(k2t) .
However, because the connection matrix (7) is diagonal, only
adjacent saddles have significant influence. This would allow
for future implementation with O(kt).

The future advantages of this framework could span beyond
visualization. In particular, while DMP attractors each encode
incoming trajectory behavior, saddle equilibria encode both
incoming and outgoing trajectory behavior. Thus, SMP system
dynamics can be more specifically defined spatially, which
could enable more complex network topology, such as state-
dependent responses to feedback that direct trajectories into
separate branches and cycles.
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APPENDIX

The variables used in this paper that were common to both
frameworks are as follows:

τ = 1, αy = 4, βy = 1

The DMP variables used in this paper are:

αx = 0.5,

And both σ and c are logarithmically spaced vectors with the
same length as the number of kernel functions.
σ = logspace(log10(.3),log10(.002),K)
c = logspace(log10(1),log10(.01),K)
The SMP variables used are:

α = 10, β = 1, ν = 1.2, ε = 10−9
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